Recent Silicon Carbide Optical Performance Results at SSG/Tinsley

Presented by: Joe Robichaud

Director, New Product/Technology Development

SSG Precision Optronics, Inc

65 Jonspin Rd

Wilmington, MA 01887

(978) 694-9991 x 216

jlr@ssginc.com

Overview

- Several activities ongoing at SSG and Tinsley to improve (1) SiC substrate
 manufacturing capability, (2) Optical performance obtained with SiC optics, and (3)
 Speed of optical polishing/finishing associated with SiC optics
 - Substrate Manufacturing Improvements:
 - Focused on simplifying the attachment schemes required for SiC system integration
 - Optical Performance Improvements:
 - Variations in manufacturing process flow and the application of Tinsley's proprietary Computer Controlled Optical Surfacing (CCOS) result in significant improvements in the optical quality demonstrated in SiC optics
 - Recent silicon clad SiC optics results
 - CVD SiC clad SiC results
 - Development activities focused on improving speed of SiC optical fabrication:
 - "Blending" demonstrations show a path to multiple head CCOS machine configuration
 - In-situ tool dressing demonstrated to improve uniformity of material removal, critical to improving convergence for hard materials

SiC Substrate Manufacturing – Reaction Bonded Silicon Carbide

RB SiC Microstructure

 Reaction Bonded slip casting fabrication process allows intricate, stiff, monolithic structures to be produced with little to no post machining

SSG Precision Optronics, Inc.

Substrate Manufacturing Improvements

- NASA contract NAS8-01085, SiC Lasercom Telescope with Automated Mirror Figuring (NASA COTR: Dr. Andrew Keys), offered opportunity to develop SiC figuring processes.
- New design and manufacturing methodology demonstrated to facilitate SiC optical system integration, minimize invar, and reduce weight.
 - Traditional SiC integration approaches rely on metallic interface inserts which are epoxy bonded or brazed into the SiC components.
 - Process developed and demonstrated uses the material properties of the SiC to allow attachment of SiC components directly to one another.
 - Number of SiC components minimized by sinter joining parts to obtain a monolithic metering structure.

Silicon Clad SiC Asphere Optical Performance (Traditional Optical Processing)

ALI Primary Mirror (spare) Surface Figure (< 150 nm pk-valley)

ALI Primary Mirror (spare) Surface Finish
(18 Angstroms RMS)

- Traditional fabrication process flow demonstrated to provide visible quality surface figures and microroughness/stray-light characteristics suitable for stressing earth observing applications
- EO1 Technology Demonstration Optics Results shown
 - Primary Specifications:
 - Off Axis general asphere (~165 cm base radius of curvature)
 - 33 cm x 17 cm clear aperture
 - Surface Figure < 150 nm pkvalley
 - Surface Finish < 20 Angstroms RMS

CCOS Polished Silicon Clad RB SiC Mirror Results (1 of 2)

- Tinsley's CCOS process provides significant improvements in optical quality
- 29.5 cm diameter
- Off-axis parabola
- Surface Figure: 8 nm RMS
- Surface Finish 8 15 Angstroms RMS

8 nm rms surface error

8-15 angstroms rms surface roughness

CCOS Polished Silicon Clad RB SiC Mirror Results (2 of 2)

- Tinsley's CCOS process provides significant improvements in optical quality
- 22 cm x 14 cm
- Off-axis parabola
- Surface Figure: 11 nm RMS
- Surface Finish 9 Angstroms RMS

 $0.0167~\lambda$ rms surface figure

9 angstrom rms surface roughness

CCOS Processed Silicon Clad SiC Asphere BRDF

CCOS Polished Silicon clad SiC Asphere BRDF

- •Silicon clad BRDF demonstrated on EO-1 technology program exceeded ALI program requirements
- as much as 10x
 CCOS polished silicon cladding demonstrates further improvement in BRDF
 - Another factor of 6x

CCOS Process Capability Facilitates Aspheric Optical Manufacturing Directly in the SiC Material

- Traditionally, aspheric processing of SiC coatings and/or substrates not practical
 - Single point diamond turning cannot be applied due to hard/brittle nature of SiC material
 - Traditional aspheric optical finishing approaches are not practical due to the materials low removal rate
- CCOS processing obviates both of these concerns
 - Deterministic CCOS grind process is suitable for brittle SiC materials, eliminating the need for SPDT
 - Automated CCOS polish process eliminates the need for hand-figuring to final figure/finish making the slow material removal rate of the SiC material a manageable issue

Potential Benefits of CCOS Processed SiC Aspheric Optics

Uncoated SiC Demonstrates High EUV Reflectivity

CVD Clad RB SiC Mirror Microroughness: 0.7 – 1.4 Angstroms RMS

- Eliminates need for thick silicon cladding deposition
- Allows improved microroughness/BRDF
 - CVD SiC clad RB SiC mirrors demonstrated to support ~ 1 Angstrom RMS microroughness
- Allows improved reflectivity over EUV spectrum
 - CVD and Cast SiC substrates demonstrated to have high reflectivity over EUV waveband (60 200 nm)

tinsley a subsidiary of SSGPO

EUV Phase I Results

RB SiC Mirror Substrate

Non-Uniform CVD SiC Cladding

10 Angstroms RMS Microroughness Demonstrated

- Phase I SBIR contract with NASA/GSFC in place to try to demonstrate ability of CVD SiC clad SiC optics to meet EUV quality requirements utilizing a process flow suitable for aspheric optics fab
- NASA contract # NAS5-03039
 - Dave Content TPOC
- Several coating runs made on RB SiC mirror substrates
 - 100 mm diameter spherical substrates
 - CCOS processed consistent with aspheric mirror polishing processes
 - Some runs delaminated due to poor surface preparation
 - Best results obtained with a non-uniform coating run which gave reasonable results in some sub-apertures
 - 10 Angstroms RMS surface roughness demonstrated

Precision Optronics, Inc.

a subsidiary of SSGPO

CVD clad RB SiC Fold Flat

- SiC Fold Flat Produced
 - •180 mm x 125 mm
- CVD cladding and CCOS polish processes applied to achieve final surface figure/finish
 - •Process consistent with aspheric optical fabrication
 - •Figure: 1.5 nm RMS; 13 nm pk-valley
 - •Finish: 9 13 Angstroms RMS
 - •Better than requirements, better results could have been achieved

Development Efforts Focused on Rapid SiC Mirror Fab

- Slip cast substrate manufacturing process is fast and cost effective
- Rapid SiC mirror production will require Improvements in the efficiency/convergence associated with the polishing process
 - CCOS grind/polish with multiple, simultaneous spindles
 - An approach for blending of these different polishing regions has been developed and demonstrated
 - DARPA Contract # DAAH01-03-C-R067
 - TPOC: Dr. Rob Hauge, Darpa Program Manager
 - In-situ tool dressing can be applied to improve tool material removal rate variation as a function of time
 - More uniform tool characteristics result in better surface convergence
 - NASA Contract # NAS8-03036
 - TPOC: Dr. Phil Stahl, NASA/MSFC

Summary

- Improvements in a number of SiC mirror manufacturing areas ongoing
 - Substrate manufacturing process variations currently being evaluated to provide cost/time savings by reducing SiC interface requirements
 - CCOS processing of silicon clad SiC optics demonstrated to provide dramatic improvements in figure/finish achievable
 - Multiple off-axis aspheric optical elements demonstrated to have excellent surface figure quality and finishes suitable for stressing, high stray-light rejection earth observing telescope applications
 - CCOS process can be applied to optically figure CVD SiC claddings on reaction bonded SiC mirror substrates, providing further enhancement of surface quality to EUV quality
 - CCOS process modifications being demonstrated in order to support rapid optical polishing to complement rapid SiC mirror fabrication processes

